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Dynamical stability and quantum chaos of ions in a linear trap
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The realization of a paradigm chaotic system, namely, the harmonically driven oscillator, in the quantum
domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of
regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.

PACS number~s!: 42.50.Vk, 05.45.Mt, 32.80.Pj
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I. INTRODUCTION

One of the major difficulties in developing quantum tec
nologies, such as quantum computers@1,2#, is the different
kinds of specifically quantum dynamical instabilities that c
occur due to interactions between different degrees of f
dom and resonant interaction with the external fields. Th
instabilities differ from dynamical instabilities in classic
systems, which are usually connected with the strong dep
dence of trajectories on the initial conditions and on the v
ues of parameters. Small variations of initial conditions
parameters lead to large deviations in the time of the co
sponding trajectories. If the speed of this deviation is ex
nential, the system becomes chaotic, and the approp
methods of description are statistical rather than determi
tic. However, for quantum systems, the notion of a traject
is not well defined. This is one of the main reasons why m
of the well-developed methods for stability analysis can
be directly applied to quantum systems. Moreover, as
first shown theoretically by Berman and Zaslavsky@3,4# ~see
also Ref.@5#!, even in a ‘‘deep’’ quasiclassical region, cla
sically chaotic systems can have a quantum dynamics th
very different from the corresponding classical dynamics

Another important phenomenon which takes place
quantum systems which are classically chaotic isquantum
nonlinear resonance~QNR!, which was first introduced and
investigated theoretically by Berman and Zaslavsky@6#.
QNR’s are quantum manifestation of nonlinear resonan
which play very important role in classically chaotic syste
@7–10#. Interactions of QNR’s are known to be intimate
connected to the transition to quantum chaos@11–17#. In the
simplest situations, QNR’s occur when a bound quant
system whose energy levels are not equally spaced is dr
by a resonant perturbation. A QNR is characterized by t
main parameters: the number of quasienergy levels,dn,
which are ‘‘trapped’’ in the potential well of the resonanc
and the characteristic frequency of slow phase oscillatio
Vph . Isolated QNR’s imply stable quantum dynamics; ov
lapping QNR’s cause a transition to quantum chaos. QN

*Author to whom correspondence should be addressed. Electr
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are very general phenomena in nonintegrable quantum
tems, and can be thought of as ‘‘quasiparticles’’ of quant
chaos~for more details, see Chap. 9 of Reichl’s recent bo
@18#, which is devoted to the transition to quantum cha
caused by interaction of QNR’s!. Until now, QNR effects
have been experimentally investigated using Rydberg at
in a resonant microwave field@19#. Understanding the insta
bilities connected with overlapping QNR’s is important f
fundamental problems related to the transition to quant
chaos, and for the design of experimental devices~such as
quantum computers based on ion traps! in which these insta-
bilities may cause significant problems. To study the char
teristic parameters of both isolated QNR’s and the proble
related to interaction of QNR’s, it is important to choose
model which~a! involves a regulated~and relatively small!
number of interacting QNR’s; and~b! can be implemented
experimentally in quantum and quasiclassical regions of
rameters.

In this paper we introduce a quantum model which
convenient for the investigation of quantum dynamical ins
bilities and the transition to quantum chaos based on
overlapping of QNR’s. The model consists of a single i
confined in a radio-frequency Paul trap, which interacts w
a resonant laser field. In the classical limit, this model
duces to the well-known model of a linear oscillator intera
ing with a plane electromagnetic wave, and was investiga
in Ref. @20–22# ~see also references therein!. The main ad-
vantage of our model is that the number of interacti
QNR’s can be regulated, for example, by varying the inte
sity of the laser radiation, which is difficult to achieve
other models based on the kicked interaction@23–28#.

Devices based on trapped ions have been used to inv
gate experimentally fundamental aspects of quantum
chanics@29,30#, as well as for important technological appl
cations such as optical frequency standards@31# and
quantum computing@1,32#. Ions are confined by a combina
tion of a rotating quadrupole potential~induced by the rod
electrodes! and a weak electrostatic potential~induced by the
conical endcap electrodes!. The ions, once trapped, can b
cooled by standard Doppler cooling and by an optical pum
ing method~‘‘sideband cooling’’!, which can cool multiple
ions down to the quantum-mechanical ground state of
trapping potential. In an ion trap quantum computer, inf
ic
©2000 The American Physical Society03-1
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G. P. BERMANet al. PHYSICAL REVIEW A 61 023403
mation can be stored in the internal quantum states of
ions ~which constitute the quantum bits, or ‘‘qubits’’ of th
computer!, and, using ultranarrow bandwidth lasers, qua
tum gate operations can be realized between pairs of qu
using quantum states of the collective motion of the ions
the harmonic confining potential as a quantum informat
bus@33#. As such devices are specifically designed to inv
tigate experimentally the preparation, evolution, and m
surement of quantum systems with large dimension Hilb
spaces, the linear ion trap is an ideal apparatus to investi
the problems of quantum-dynamical stability, the transit
to quantum chaos, and the spectroscopy of quantum no
ear resonances. In this paper, we present the main elem
of the derivation of our model—a quantum linear oscilla
driven by a monochromatic wave, and the preliminary a
lytical and numerical results on the classical and quan
dynamics in different regions of parameters.

The paper is organized as follows. In Sec. II, the theory
how a trapped ion can be driven by laser fields in the man
of the harmonically driven oscillator is described in deta
We decided to present a detailed derivation of the Ham
tonian because it is important for a justification of the mo
we use and for fitting the parameters in the experime
which are planned in the future. It should be noted in p
ticular how similar the arrangement and laser requireme
are to those employed in ion trap quantum computer exp
ments. In Sec. III, theclassical theory of the harmonically
driven oscillator is discussed; the quantum theory is
scribed in Sec. IV. The connection of this system with t
solid-state Anderson localization model is described in S
V. The results of numerical simulations are presented in S
VI. We conclude this paper with a brief discussion of t
possibilities for experimental verifications.

II. RAMAN INTERACTIONS OF LASERS
AND TRAPPED IONS

In this section we derive the Hamiltonian describing
trapped ion interacting with laser fields in the manner o
harmonically driven oscillator. One of the goals of th
present investigation is a theoretical analysis of an exp
mentally realizable dynamic system, and, in order to fac
tate the interface between theory and experiment, we
scribe the laser-ion interaction in some detail. A single
confined in a linear rf trap may be described by an effect
Hamiltonian given by the formula

Ĥ5
1

2m
p̂21

1

2
mv2x̂21ĤI , ~2.1!

wherem is the mass of the ion,x̂ ( p̂) is the position~mo-
mentum! operator for the ion, andv is the angular trapping
frequency. We are only considering motion of the ion alo
one direction, namely, the axis of weak confinement of
trap; the ion is strongly confined along the other two dire
tions, transverse to the axis, and so we will assume that
motion in those directions can be neglected~see Fig. 1!.

We will employ the interference of two laser beams a
ing on the ion to realize experimentally our desired inter
02340
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tion HamiltonianĤI . Such Raman interactions between l
sers and ions are a standard technique, and are describ
detail elsewhere@34#. The ion, confined in the harmonic trap
ping potential, will have many quantum levels associa
with both internal~atomic! variables and external~motional!
degrees of freedom. We will confine our attention to tw
manifolds of such states, separated in energy by an ap
ciable amount~see Fig. 2!. What we have in mind is a lowe
manifold consisting of the magnetic sublevels of our io
each level having a series of sidebands associated with e
tation of quanta of the external harmonic oscillations; t
upper manifold would then be the sublevels of an exci
state of the ion, with similar sidebands. The lasers w
which the ion is interacting will be detuned from the optic
transition between the upper and lower levels, so that the
a negligible probability of any of these levels becoming e
cited: the lasers only cause a redistribution of populat
among the lower manifold of levels. The upper levels m
then be adiabatically eliminated from the problem, and o
can therefore show that the matrix elements of the effec
interaction Hamiltonian for the lower manifold is given b
the formula@34#

^M uĤI uN&52(
L

(
a,a8

VML
(a)VNL

(a8)*

4\~vL2vN2va8!

3exp@ i ~va2va8!t#, ~2.2!

FIG. 1. A schematic diagram of an ion in a linear trap to illu
trate the notation and configurations of the laser fields.

FIG. 2. A schematic illustration of the energy levels of a trapp
ion.
3-2



t
m
ic

a
t
na
s
cil
h
tu

fo
r
r
he

nd
m
q

as

a-

r

els

n to
we
els

he

his
sys-

tes

DYNAMICAL STABILITY AND QUANTUM CHAOS O F . . . PHYSICAL REVIEW A 61 023403
where the sum involvingu is over all of the upper manifold
levels and the two sums involvinga anda8 are over all of
the applied laser fields, the Rabi frequency of theath laser
being defined by

\VML
(a) 5^M ud̂iEi

(a)~ r̂ !uL&. ~2.3!

In Eq. ~2.3!, d̂i is the i th component of the dipole momen
operator@ i 5(1,2,3), standing for the three Cartesian co
ponents of a vector, and summation over repeated ind
being implied#, Ei

(a) is thei th component of the electric field
from theath laser~which is a function of the ion’s position
operator,r̂ ), \vM is the energy of theM th lower manifold
level,\vL is the energy of theLth upper manifold level, and
va is the angular frequency of theath laser.

To proceed, we will make a distinction between intern
and external degrees of freedom. We can form a basis se
the Hilbert space from a tensor product of a set of inter
quantum levels with a basis set for the external degree
freedom~for example, the Fock states of the harmonic os
lator!. The set of internal states will be divided between t
upper and lower manifolds. Thus we will make the substi
tion

uL&→ul&u l &, ~2.4!

uM &→um&um&, ~2.5!

uN&→un&un&, ~2.6!

whereum&, un&, andu l & are members of the basis states
the motion degrees of freedom,ul& is a member of the uppe
internal manifold, andum& andun& are members of the lowe
internal manifold. In this notation, the matrix elements of t
Hamiltonian equation~2.2! become:

^mu^muĤI un&un&

52(
l

(
l

(
a,a8

^mud̂i ul&^lud̂ j un&

4\~vl2vn2va81v l2vn!

3^muEi
(a)~ r̂ !u l &^ l uEj

(a8)* ~ r̂ !un&exp@ i ~va2va8!t#.

~2.7!

The average detuning of thelth upper manifold level is
defined to be

Dl5vl2v̄n2v̄a , ~2.8!

where\v̄n is the average energy of the lower manifold a
v̄a is the average of the laser frequencies. We will assu
that, in the denominator of the fraction appearing in E
~2.7!, we can make the following approximation:

vl2vn2va81v l2vn'Dl . ~2.9!

If we use the completeness property of the external b
states~i.e., ( l u l &^ l u5 Î , whereÎ is the identity operator!, then
02340
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we obtain the following formula for the Hamiltonian oper
tor for the lower manifold states:

ĤI5(
m,n

km,n~ r̂ ,t !um&^nu, ~2.10!

where

km,n( r̂ ,t)52(
l

^mud̂i ul&^lud̂ j un&
4\Dl

Ei~ r̂ ,t !Ej* ~ r̂ ,t !,

~2.11!

and the total laser fieldEi is the sum of the different lase
components:

Ei~ r̂ ,t !5(
a

Ei
(a)~ r̂ !exp~ ivat !. ~2.12!

A. Two-level systems

Let us now assume that there are only two internal lev
in the lower manifold, which we will denoteu1& andu2&. As
will be discussed below, this is a reasonable assumptio
make for the atomic systems we have in mind. Also,
introduce a special coordinate system: the two internal lev
are split by a magnetic field acting along theZ axis, which is
the axis of quantization for the internal levels of our ion. T
other two axes are theX and Y axes. These axes donot
necessarily coincide with thex, y, and z directions intro-
duced to describe the motion of the ion in the trap. In t
case it is convenient to use the Pauli operators for the
tem:

ŝ15u1&^2u1u2&^1u, ~2.13!

ŝ25 i ~ u1&^2u2u2&^1u!, ~2.14!

ŝ35u2&^2u2u1&^1u. ~2.15!

Using these operators the Hamiltonian can be written as

ĤI5h0~ r̂ ,t ! Î 1hi~ r̂ ,t !ŝ i , ~2.16!

where Î is the identity operator (u1&^1u1u2&^2u), and

h0~ r̂ ,t !5
1

2
@k1,1~ r̂ ,t !1k2,2~ r̂ ,t !#, ~2.17!

h1~ r̂ ,t !5
1

2
@k1,2~ r̂ ,t !1k2,1~ r̂ ,t !#, ~2.18!

h2~ r̂ ,t !5
1

2i
@k1,2~ r̂ ,t !2k2,1~ r̂ ,t !#, ~2.19!

h3~ r̂ ,t !5
1

2
@k2,2~ r̂ ,t !2k1,1~ r̂ ,t !#. ~2.20!

For the special case that the lower manifold of internal sta
consists of two magnetic sublevels of the2S1/2 ground state
3-3
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G. P. BERMANet al. PHYSICAL REVIEW A 61 023403
of an alkali like ion, and the upper manifold is the two su
levels of the 2P1/2 excited state whose Zeeman splitting
not too large, the atomic matrix elements appearing in
~2.11! can be calculated in closed form. As a result the co
ponents ofh appearing in Eq.~2.16! reduce to the simple
forms ~see Appendix A!

h0~ r̂ ,t !52xuE~ r̂ ,t !u2,

h1~ r̂ ,t !52x Im$EZ~ r̂ ,t !EY* ~ r̂ ,t !%,
~2.21!

h2~ r̂ ,t !52x Im$EX~ r̂ ,t !EZ* ~ r̂ ,t !%,

h3~ r̂ ,t !52x Im$EX~ r̂ ,t !EY* ~ r̂ ,t !%,

where Im$•••% is the imaginary part of the quantity in curl
brackets, andx5Ape0/4k0

3D (k0 and A are, respectively,
the wave number and EinsteinA coefficient for the transition
between the upper and lower manifolds.D is the laser detun-
ing ande0 the permittivity of free space!.

The quantity proportional toh0( r̂ ,t) in Eq. ~2.16! repre-
sents a dynamical effect of the laser fields on the ion wh
does not cause any effect on its internal degrees of freed
the term proportional toh3( r̂ ,t) represents an ac Stark sh
of the two internals levels; the terms proportional toh1( r̂ ,t)
and h2( r̂ ,t) represent transitions between the two levels
the lower manifold. If we make the requirement that t
lasers are plane polarized along the axis of quantizationZ,
then it is clear from the above formulas thath15h25h3
50, and only the first term involvingh0 has any effect.

Let us assume that two laser beams, designated the p
~p! and Stokes~s! beams, are present, both plane polarized
the Z direction, i.e.,

EX~ r̂ ,t !50,

EY~ r̂ ,t !50,

EZ~ r̂ ,t !5E(p)exp@2 i ~kp• r̂2vpt !#1E(s)

3exp@2 i ~ks• r̂2vst !#. ~2.22!

The interaction Hamiltonian in this case is given by

ĤI5x$uE(p)u21uE(s)u212uE(p)E(s)* u

3cos@~kp2ks!• r̂2~vp2vs!t1f#%, ~2.23!

where f5Arg$E(p)E(s)* % is the phase difference betwee
the two lasers. The constant terms involvinguE(p)u2 and
uE(s)u2 have no effect on the evolution, and so will be n
glected. Thus the full Hamiltonian, including the effect of t
harmonic evolution of the ion along the weak axis of the tr
~but excluding the internal free evolution!, is

Ĥ5
p̂2

2m
1

mv2x̂2

2
1

«

k
cos~kx̂2Vt !, ~2.24!
02340
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whereV5vp2vs . The parameters« andk, which will fea-
ture prominently in what follows, are given by

«5
Ape0k

2k0
3D

uE(p)E(s)* u, ~2.25!

k5~kp2ks!•ex , ~2.26!

whereex is the unit vector along thex axis, i.e., the axis of
weak confinement in the trap.

III. CLASSICAL LIMIT

In the classical limit (p̂→p,x̂→x), the Hamiltonian
~2.24! takes the form

H5
p2

2m
1

mv2x2

2
1

«

k
cos~kx2Vt !. ~3.1!

The classical equations of motion in (p,x) variables are

ṗ52
]H

]x
52mv2x1« sin~kx2Vt !, ẋ5

]H

]p
5

p

m
.

~3.2!

Equations~3.2! lead to the following second order nonline
differential equation:

ẍ1v2x5
«

m
sin~kx2Vt !. ~3.3!

A. Dynamics near resonances

Assume that the driving frequency is close to a resonan
i.e.,

Nv'V, ~3.4!

whereN is an integer. In this case it is convenient to descr
a classical dynamics using the ‘‘action-angle’’ variabl
@20–22# (I ,w), which are related to the variables (p,x) by
the canonical transformation~see Appendix B!

x5A2NI

vm
cosS w1Vt

N D , p52A2NIvm sinS w1Vt

N D .

~3.5!

In the variables (I ,w), the Hamiltonian~3.1! takes the form

H5~Nv2V!I 1
«

k
cosS kA2NI

vm
cosF2Vt D , ~3.6!

where

F5
w1Vt

N
. ~3.7!

The second term in Eq.~3.6! can be expanded as a series
Bessel functionsJn(z):
3-4
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cosS kA2NI

vm
cosF2Vt D

5 (
n52`

`

JnS kA2NI

mv D cos@n~F1p/2!2Vt#. ~3.8!

We have, for the phasen(F1p/2)2Vt,

n~F1p/2!2Vt5n
w

N
1

np

2
1

n2N

N
Vt. ~3.9!

Thus the classical Hamiltonian~3.6! can be represented in
form where the unperturbed part and the perturbation
explicitly separated,

H5H01Hint , ~3.10!

where

H05~Nv2V!I 1
«

k
JNS kA2NI

mv D cos~w1Np/2!,

~3.11!

Hint5
«

k (
n5” N

Jl S kA2NI

mv D cosS n

N
w1

np

2
1

n2N

N
Vt D .

~3.12!

In the (I ,w) variables, the classical equations of motion a

İ 52
]H

]w

5
«

k
JN~z!sin~w1pN/2! ~3.13!

1
«

kN (
n5” N

nJn~z!sinS n

N
w1

np

2
1

n2N

N D . ~3.14!

ẇ5
]H

]I
5Nv2V1«A N

2mvI
JN8 ~z!cos~w1pN/2!

~3.15!

1«A N

2mvI (n5” N
Jl8~z!cosS n

N
w1

np

2
1

n2N

N D ,

~3.16!

where

z5kA2NI

mv
~3.17!

is a dimensionless variable. Equations~3.14! and ~3.16! are
convenient when analyzing the classical dynamics in the
cinity of the resonance@Eq. ~3.4!#. This case corresponds t
small values of«:

«,«cr . ~3.18!
02340
re

i-

Usually, the critical parameter«cr in Eq. ~3.18! should be
found numerically~see Sec. V!. Under condition~3.18!, clas-
sical dynamics can be approximately described by
Hamiltonian H0 @Eq. ~3.11!#. The corresponding approxi
mate equations of motion follow from Eqs.~3.14! and~3.16!:

İ 52
]H

]w
5

«

k
JN~z!sin~w1pN/2!, ~3.19!

ẇ5
]H

]I
5Nv2V1«A N

2mvI
JN8 ~z!cos~w1pN/2!.

~3.20!

In the general case~for « large!, it is more convenient to use
the following exact equations written in (I ,w) variables:

İ 52
«

N
A2NI

mv
sinFkA2NI

mv
cosS w1Vt

N D2VtG
3sinS w1Vt

N D , ~3.21!

ẇ5Nv2V2«A N

2mvI
sinFkA2NI

mv
cosS w1Vt

N D2VtG
3cosS w1Vt

N D . ~3.22!

B. Dimensionless variables

To describe both the classical and quantum dynamics,
convenient to introduce the dimensionless variables

t5vt, j5kx, l 5
I

\
,

H05
H0

\v
, Hint5

Hint

\v
, H5

H

\v
~3.23!

and the dimensionless parameters

e5
«k

mv2 , h25
\k2

2mv
, m5

V

v
, d5N2m.

~3.24!

The parameterh is the Lamb-Dicke parameter used in th
theory of ion traps to quantify the strength of confinemen

C. Isolated nonlinear resonance

Using Eqs.~3.23! and~3.24!, from Eqs.~3.19! and~3.20!
we have the approximate dimensionless equations of mo
in the vicinity of the resonance~3.4!,

dl

dt
52

]H0

]w
5

e

2h2 JN~z!sin~w1pN/2!, ~3.25!

dw

dt
5

]H0

] l
5d1

e

2h
AN

l
JN8 ~z!cos~w1pN/2!,

~3.26!
3-5



il

ia

s
th

he

-

n-
use
ard

ave

-

G. P. BERMANet al. PHYSICAL REVIEW A 61 023403
where z52hANl, and the dimensionless resonant Ham
tonian is

H05 ld1
e

2h2 JN~z!cos~w1pN/2!. ~3.27!

The classical dynamics corresponding the Hamilton
~3.27! we shall call ‘‘nonlinear resonance.’’

To estimate the region of parameters of validity of Eq
~3.25! and ~3.26!, their solutions should be compared wi
the solutions of exact equations~3.21! and~3.22!. Equations
~3.21! and ~3.22! in the dimensionless variables have t
forms

dl

dt
52

e

h
A l

N
sinFz cosS w1mt

N D2mtGsinS w1mt

N D ,

~3.28!

dw

dt
5d2

e

2h
AN

l
sinFz cosS w1mt

N D2mtGcosS w1mt

N D .

~3.29!

Equations~3.28! and ~3.29! are derived from the exact di
mensionless Hamiltonian

H5 ld1
e

2h2 cosFz cosS w1mt

N D2mtG . ~3.30!

In the dimensionless variables~3.23! and ~3.24!, Eq. ~3.3!
takes the form

d2j

dt2 1j5e sin~j2mt!. ~3.31!

IV. QUANTUM EQUATIONS OF MOTION

In the dimensionless notation@Eqs.~3.23! and~3.24!#, the
quantum Hamiltonian~2.24! takes the following form in co-
ordinate representation:

Ĥ

\v
5H5

1

2h2F22h4
]2

]j2 1
j2

2
1e cos~j2mt!G .

~4.1!

The Schro¨dinger equation for the Hamiltonian~4.1! is

i2h2
]C~j,t!

]t
5@ĤLO1e cos~j2mt!#C~j,t!, ~4.2!

whereĤLO is the Hamiltonian of a linear oscillator:

ĤLO522h4
]2

]j2 1
j2

2
. ~4.3!

For ĥ0 we have the well-known eigenvalue problem

ĤLOun&52h2~n11/2!un&, ~4.4!

where
02340
-

n

.

un&[fn~j!5F 1

h2nn!A2p
G 1/2

Hn~j/A2h!e2j2/4h2
,

~4.5!

whereHn(y) is a Hermite polynomial. Although these eige
function may appear somewhat unfamiliar because of the
of dimensionless variables, they are in fact the stand
eigenfunctions of an unperturbed harmonic oscillator@i.e.,
the Hamiltonian given by Eq.~2.1! with ĤI50#. The nor-
malization condition for the eigenfunctionfn(j) is

E
2`

`

fn~j!fm~j!dj5dn,m . ~4.6!

To describe the quantum dynamics we represent the w
function in Eq.~4.2! by the form

C~j,t!5 (
n50

`

cn~t!fn~j!. ~4.7!

From Eq.~4.2! we have the equations for the complex am
plitudes,cn(t):

i
dcm~t!

dt
5~m11/2!cm~t!1

e

2h2

3 (
n50

`

^mucos~j2mt!un&cn~t!

5~m11/2!cm~t!1
e

4h2(
n50

`

„e2 imtFm,n~h!

1eimtFm,n* ~h!…cn~t!. ~4.8!

FIG. 3. Energy levels of a Ca1 ion. Wavelengths and radiative
lifetimes are shown. See Ref.@33# for references.
3-6
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FIG. 4. Classical phase space~Poincare´ sec-
tion!. Trajectories with different initial conditions
are shown. The values ofe are indicated in the
figure: ~a! e52, 2.5, 3, and 4.~b! e55, 8, 10,
and 20;h50.45; N54 andd51022.
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In Eq. ~4.8!, Fm,n(h) is the matrix element:

Fm,n~h!5^muei jun&

5
1

Ap2m1nm!n!
E

2`

`

Hm~u!Hn~u!e2u21 i2hudu.

~4.9!

Equation~4.8! is used below, in Sec. V, for numerical ca
culation of the quantum dynamics of the system.

V. RESULTS OF NUMERICAL CALCULATIONS

In this section, we present results of numerical simu
tions of classical and quantum dynamics of systems wh
02340
-
se

Hamiltonians have the form given by Eq.~2.24!. We have
used a set of parameters which will allow easy experime
verification of our predictions using the type of ion trap a
paratus currently being used to investigate quantum com
tation.

If we use the geometry for the pump and Stokes las
shown in Fig. 1, the parameterk defined by Eq.~2.26! is
given byk5cosu(kp1ks)'2k0 cosu. The laser field strengths
uE(p)u anduE(s)u can be related to the power in the pump a
the Stokes beams, respectively. It is usual to generate on
these beams~the Stokes, say! by frequency modulation of
the pump beam, so that the beam parameters will be sim
for them both. The power in the pump beam is given by
formula ~Ref. @35#, p. 488!
3-7
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FIG. 5. Time evolution of the dimensionles
classical amplitude of oscillationsj(t) for e50,
0.5, 1, 2, 5, and 8. The maximum time of simu
lation is tmax531.8 ms. Initial condition:
(j,dj/dt)5(0,0).
.
n-

er

m

e

P5
ce0p

4
w0

2uE(p)u2, ~5.1!

wherew0 is the laser spot size~i.e., the 1/e2 radius of the
intensity distribution!. If we substitute this result into Eq
~2.25!, we obtain the following expression for the dime
sionless parametere:

e5
«k

mv25
8AP

ck0mv2w0
2D

s cos2 u, ~5.2!
02340
wheres5uE(s)u/uE(p)u is a dimensionless parameter of ord
unity which can be controlled experimentally.

Singly ionized calcium (m56.64310226 kg) is common
ion in use by several groups worldwide for ion-trap quantu
research~see Fig. 3 for energy levels of this ion!. For the
2S1/2-

2P1/2 transition in this ion~wavelengthl05397 nm)
the EinsteinA coefficient is@33# A51.303108 s21, and the
wave number isk052p/l051.583107 m21. If we assume
a laser power of 10 mW, a spot sizew0520 mm a trapping
frequency v52p3500 kHz, and a detuningD52p
31.0 GHz, thene51333s cos2 u. Thus by varying the ex-
perimental free parameterss andu, one can achieve a larg
-
FIG. 6. Chaotic dynamics of the dimension
less classical amplitude of oscillationsj(t) for
the valuese510, 20, 30, and 40. The maximum
time of simulation istmax531.8 ms. Initial con-
dition: (j,dj/dt)5(0,0).
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dynamic range for the dimensionless driving forcee. The
Lamb-Dicke parameterh for these parameters is 0.502 cosu.

The driving frequencyV is the difference between th
pump and the Stokes frequencies. As mentioned above, t
two beams will be realized by splitting one parent be
using a beam splitter and then frequency modulating on
the resultant beam using either an acousto-optic or
electro-optic modulator. In this manner splittings as high
V52p3100 MHz can be achieved without too much d
ficulty, so that the dimensionless parameterN can be in the
range 0–200.

FIG. 7. Frequency Fourier spectrum of the classical amplit
j(t) for e50, 0.5, 1, 2, 5, and 8. The transition to chaos appear
e'8. Initial condition: (j,dj/dt)5(0,0).
02340
se

of
n
s

A. Simulation of classical dynamics

In Figs. 4~a! and 4~b!, the classical phase space~Poincare´
section! is shown in the (j,dj/dt) plane, for seven initial
conditions, and for different values of the dimensionle
driving forcee, which characterizes the intensity of the las
beams, and is defined in Eq.~5.2!. To derive these results
Eq. ~3.31! was solved numerically~for N54 andd51022).
These are ‘‘stroboscopic’’ plots, i.e., the values of (j,dj/dt)
are plotted for times separated by the dimensionless per
vT52pv/V52p/m. One can see from Fig. 4~a!, that for
small values ofe (e,2) the classical dynamics is regular
some regions of the phase space. Note that even at t
values ofe there exist relatively large regions in the pha
space with a chaotic component. When the interaction
rametere increases, the regions with the regular classi
dynamics become smaller. As one can see from Fig. 4~a!,
even ate54, the dynamics in the region of the phase spa
corresponding to the ‘‘classical ground state’’~CGS! @the
vicinity of the point ~0,0!# remains regular. At larger value
of e (e'8) the CGS becomes chaotic. This transition
demonstrated in Fig. 4~b!. Figures 5 and 6 show the tim
evolution of the dimensionless classical coordinate of
ion, j(t). The maximum dimensionless time of simulation
tmax5100, corresponds to the real time scaletmax
531.8 ms (v52p3500 kHz). The initial conditions for
the dynamics, shown in Figs. 5 and 6 correspond to the C
As one can see from Fig. 5, the chaotic component appea
e'8, and is well resolved fore.10 ~see Fig. 6!. The fre-
quency Fourier transform for the dynamics, shown in Figs
and 6, is presented in Figs. 7 and 8. It is well known that
transition to the dynamical chaos in classical dynamical s
tems is accompanied by the transition in the frequency F
rier spectrum. The regular dynamics corresponds to the
crete frequency spectrum, and the chaotic dynam
corresponds to the continuous frequency spectrum. T

e
at
e

os
FIG. 8. Frequency Fourier spectrum of th
chaotic dynamics of the classical amplitudej(t)
for e510, 20, 30, and 40. The transition to cha
appears ate'8. Initial condition: (j,dj/dt)
5(0,0).
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FIG. 9. Dynamics of the quantum probabil
ties: Pn(t)5ucn(t)u2 for n50, 1, 2, 3, 4, and 5,
and e50, 0.5, 1, 1.5, and 2. Initial condition
c0(0)51, cn(0)50 for (n.0).
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characteristic modification of the frequency spectrum is de
onstrated in Figs. 7 and 8. For small values of the dim
sionless driving forcee, one can see only some quasidiscre
lines in the Fourier spectrum. Whene increases, the fre
quency spectrum transforms to a continuous one.

B. Simulation of quantum dynamics

To simulate quantum dynamics, the following paramet
were chosen:N54, d51022, and h50.45. For the initial
conditions we used the ground state of the unperturbed q
tum linear oscillator,c0(0)51 and 0, forn.0. Figure 9
02340
-
-

e

s

n-

shows the time evolution of the quantum probabiliti
Pn(t)[ucn(t)u2 (n50, 1, 2, 3, 4, and 5! for relatively
small values ofe50, 0.5, 1, 1.5, and 2. These probabilitie
are quantities which can be measured by tomographic te
niques@36#. The values ofe correspond to the regular clas
sical dynamics which starts from the CGS. The time evo
tion of quantum probabilitiesPn(t) (n50, 1, 2, and 3! for
larger values ofe is shown in Fig. 10. Because the value
the parametere'8 corresponds to the classical chaotic d
namics for the initially populated CGS, curves~4! in Fig. 10
describe the quantum chaotic motion. Figure 11 shows
dynamics of the probability functionP0(t) for the larger
i-
FIG. 10. Dynamics of the quantum probabil
ties: Pn(t)5ucn(t)u2 for n50, 1, 2, and 3, and
e53, 5, and 7.5. Initial condition:c0(0)51,
cn(0)50 for (n.0).
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FIG. 11. Dynamics of the quantum probabi
ity: P0(t)5uc0(t)u2 for e51, 5, 7.5, and 8. Ini-
tial condition: c0(0)51, cn(0)50 for (n.0).
The transition to quantum chaos corresponds
e'8. The initial conditions are as in Fig. 10.
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time interval:tP@0,30#. In real time this corresponds tot
P@0,9.54# ms. As one can see from Fig. 11, fore.7.5 the
dynamics of the probability functionP0(t) becomes rathe
complicated, and corresponds to the classical chaotic mo
We hope that this complicated dynamics of the probabi
functionsPn(t) can be measured directly in the experime
with trapped ion. Figure 12 represents the results of the
merical simulations of the frequency Fourier spectrumP0(n)
of the quantum probability functionP0(t). As one can see
from Fig. 12, the characteristic qualitative modification
the frequency spectrumP0(n) starts frome.7.5. This modi-
02340
n.
y
s
u-

fication of the frequency Fourier spectrum can also be m
sured experimentally. In Fig. 13, we show the results of n
merical simulation of the dynamical evolution of the avera
value,^j2&[^C(j,t)uj2uC(j,t)&, where the wave function
C(j,t) is defined in Eq.~4.7!. This dynamical characteristic
is very important for understanding the conditions of stab
ity of the system under consideration, as it describes
amplitude of the ion’s oscillations in a trap due to the infl
ence of the resonant laser fields. Experimentally measu
the time dependence of this amplitude is important for ch
acterizing the regular and chaotic dynamics of an ion. T
e

at
FIG. 12. Frequency Fourier spectrum of th
quantum probability:P0(t)5uc0(t)u2 for e51,
5, 7.5, and 8. The transition to chaos appears
e'8. The initial conditions are as in Fig. 10.
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FIG. 13. Dynamical evolution of the averag
value: ^j2&[^C(j,t)uj2uC(j,t)&, where the
wave functionC(j,t) is defined in Eq.~4.7!. e
53, 5, 7.5, and 8. The transition to chaos appe
at e'8. The initial conditions are as in Fig. 10
ig
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-
s-
o

of

xi-

e-
os,
frequency spectrum of the amplitude^j2& is shown in Fig.
14 for different values of the perturbation parametere. As
one can see from Fig. 14, ate.7.5 the frequency spectrum
qualitatively modifies, and includes many harmonics. In F
15, we show the time evolution of two functions: the unp
turbed Hamiltonian of quantum linear oscillator~4.3!,

^ĤLO&, and the amplitudêj2&, for the values of the pertur
bation parameter:e50, 0.5, and 2. The corresponding cla
sical dynamics is regular in this case. The time evolution
02340
.
-

f

the same functions is shown in Fig. 16 for larger values
the parametere53, 5, 7.5, and 8. Curves~3! and ~4! corre-
spond to the classically chaotic regime of motion. The ma
mum simulation time at Fig. 16 istmax54.77 ms.

VI. CONCLUSION

In this paper, we introduced a quantum model which d
scribes a transition from regular dynamics to quantum cha
e
FIG. 14. Frequency Fourier spectrum of th
quantum amplitude:̂j2&, for e51, 5, 7.5, and 8.
The transition to chaos appears ate'8. The ini-
tial conditions are as in Fig. 10.
3-12
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FIG. 15. Time evolution of two functions: the
unperturbed Hamiltonian of quantum linear osc

lator @Eq. ~4.3!#, ^ĤLO&, and the amplitudêj2&,
for the values of the perturbation parametere
50, 0.5, and 2. The corresponding classical d
namics is regular in this case.e50, 0.5, and 2.
The initial conditions are as in Fig. 10.
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for a single ion in a linear ion trap. The configuration of t
resonant laser fields allowed us to represent the model
‘‘standard’’ form. That is, our model formally describes
quantum linear oscillator interacting with a one-dimensio
plane wave@see Hamiltonian~2.24!#. The classical version o
this model is very important and useful in the theory of t
dynamical chaos@9#. This model differs significantly from
the ‘‘usual’’ nonlinear models~as, for example, a ‘‘standar
map’’ @8,10#! considered in theoretical works on dynamic
chaos. That is, the model described by the Hamilton
02340
a

l

l
n

~2.24! is degenerate—it includes ‘‘nonlinearity’’@the term
cos(kx2Vt)# and a ‘‘perturbation parameter’’~a parameter
e) in the same term in the Hamiltonian~2.24!. For these
kinds of systems, theKAM theory cannot be applied di
rectly, and these systems possess many unusual prope
@9#. So quantum analysis of the model described by Ham
tonian~2.24! both theoretically and experimentally will be o
significant importance for understanding complicated d
namics in this system, and for applications in different d
vices based on the trapped ions. The instabilities presen
-
f

e
.

FIG. 16. The time evolution of the same func
tions shown in Fig. 14, but for larger values o
the parametere53, 5, 7.5, and 8. Curves~3! and
~4! correspond to the classically chaotic regim
of motion. The initial conditions are as in Fig. 10
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G. P. BERMANet al. PHYSICAL REVIEW A 61 023403
the dynamical model studied here may also play a role in
ion-trap quantum computer, whose dynamics are somew
different in that the external degrees of freedom are coup
to internal quantum states of the trapped ions~see Ref.@1#,
and references therein!. The numerical results presented
this paper describe both regular and chaotic quantum dyn
ics, which starts from the initial population of the linear o
cillator’s ground state. We believe that this regime of moti
should be investigated in the experiments with the trap
single ion. These experiments will allow one to establ
qualitative and quantitative correspondence between
quantum dynamics described by Hamiltonian~2.29!, and the
real system of ‘‘a single trapped ion plus resonant la
fields.’’ Further theoretical analysis and experiments sho
include both pure quantum and quasiclassical regions of
tial population, and the parameters describing regular
chaotic regimes in both these regions. These investigat
are now in progress.
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APPENDIX A: DERIVATION OF EQ. „2.21…

The dipole matrix elements appearing in Eq.~2.11! can be
written in terms of the EinsteinA coefficient between the
upper and lower manifolds as follows:

^mud̂i ul&5A3Ac2~2Jl11!

4v0
2a

(
q521

1 S Jm 1 Jl

2mm q ml
D ei

(q) ,

~A1!

wherec is the speed of light,a is the fine-structure constan
v0 is the angular frequency of the transition between
upper and lower manifolds, (Jl ,ml) are the magnetic quan
tum numbers for the upper manifold stateul&, (Jm ,mm) are
the magnetic quantum numbers for the lower manifold s
um&, the term containing six quantities in brackets is t
Wigner 32 j symbol, andei

(q) is the i th component of the
qth normalized spherical basis vector, viz.

e(1)52
1

A2
~1,2 i ,0!, ~A2!

e(0)5~0,0,1!, ~A3!

e(21)5
1

A2
~1,i ,0!. ~A4!

Substituting Eq.~A1! into Eq. ~2.11!, and assuming that th
Zeeman splitting in the upper manifold is small compared
the overall detuning, so thatDl'D ~independent ofl), then
we find that the quantitieskm,n are given by the formula
02340
e
at
d

m-

d
h
he

r
ld
i-
d

ns

.
p-
.
.

e
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o

km,n~ r̂ ,t !5
3pe0Ac3

4v0
3D

L i j ~m,n!Ei~ r̂ ,t !Ej* ~ r̂ ,t !, ~A5!

where the tensorL i j (m,n) is given by

L i j ~m,n!5~2Jl11! (
ml52Jl

Jl

(
q,q8521

1 S Jm 1 Jl

2mm q ml
D

3S Jn 1 Jl

2mn q8 ml
D ei

(q)ej
(q8)* . ~A6!

If we assume that the lower manifold is the2S1/2 ground
state of an alkali ion, the two states being denotedu1&
52S1/2,m521/2 andu2&52S1/2,m51/2, and that the uppe
manifold is the2P1/2 state, then these tensors can be found
closed forms:

L i j ~1,1!5L i j* ~2,2!5
1

3 S 1 2 i 0

i 1 0

0 0 1
D ,

~A7!

L i j ~1,2!52L i j* ~2,1!5
1

3 S 0 0 21

0 0 2 i

1 i 0
D .

Therefore the cross products involving the electric field co
ponents with these tensors can be written as follows:

L i j ~1,1!EiEj* 5
1

3
@ uEu212 Im$EXEY* %#, ~A8!

L i j ~2,2!EiEj* 5
1

3
@ uEu222 Im$EXEY* %#, ~A9!

L i j ~1,2!EiEj* 5
1

3
@EZ~EX* 1 iEY* !2EZ* ~EX1 iEY!#,

~A10!

L i j ~2,1!EiEj* 5
1

3
@2EZ~EX* 2 iEY* !1EZ* ~EX2 iEY!#.

~A11!

If these results are substituted into the definition ofh0 and
hi , Eqs. ~2.17!–~2.20!, one obtains Eq.~2.21!. Similar re-
sults, with slightly different numerical factors, are obtained
the upper manifold is a2P3/2 state.

APPENDIX B: CANONICAL TRANSFORM TO ‘‘ACTION-
ANGLE’’ VARIABLES

The theory of canonical transforms in classical mechan
is described in detail in Ref.@37#, Sec. 45. We want to trans
form from a set of variablex,p to a new setw,I , wherew
plays the role of position coordinate andI the role of mo-
mentum. Such transforms are specified by agenerating func-
tion F(x,w,t). Then variablesp andI and the Hamiltonian in
3-14
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the new coordinate system are related toF by the formulas

p5
]F

]x
, ~B1!

I 52
]F

]w
, ~B2!

H~w,I !5H~x,p!1
]F

]t
. ~B3!

For the canonical transform used in Sec. III A, the genera
function is given by

F~x,w,t !52
mv

2
x2 tanS w1Vt

N D . ~B4!

Substituting, we find

p52mvx tanS w1Vt

N D , ~B5!
. H
on
or
ys

-

,

h.

A

02340
g

I 52
mv

2N
x2 sec2S w1Vt

N D , ~B6!

H~w,I !5H~x,p!2
mvV

2N
x2 sec2S w1Vt

N D ~B7!

5H~x,p!2VI . ~B8!

Equation~B5! implies that

x5A2NI

mv
cosS w1Vt

N D . ~B9!

On substitution of this last formula into Eq.~B6!, we obtain

p52A2NmvI sinS w1Vt

N D . ~B10!
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